Indexed by:
Abstract:
In situ scanning electron microscopy (SEM) offers a good way to investigate the structural evolution during lithiation and delithiation processes. In this paper, the dynamical morphological evolution of 3D-line-structured/unstructured Si/C composite electrodes was observed by in situ SEM. The investigation revealed the microstructural origin of large charge capacity for 3D-line-structured anodes. Based on this proposed mechanism, a coarse optimization of 3D-line-structured anodes was proposed. These results shed light on the unique advantages of using an in situ SEM technique when studying realistic bulk batteries and designing 3D electrode structures.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED SCIENCES-BASEL
Year: 2019
Issue: 5
Volume: 9
2 . 7 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:136
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 18
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: