Indexed by:
Abstract:
Many rectangular plate elements developed in the history of finite element method (FEM) have displayed excellent numerical properties, yet their applications have been limited due to inability to conform to the arbitrary geometry of plates and shells. Numerical manifold method (NMM), considered to be a generalization of FEM, can easily solve this issue by viewing a mesh made up of rectangular elements as mathematical cover. In this study, ACM element (Adini and Clough element from A. Adini, R.W. Clough, Analysis of plate bending by the finite element method, University of California, 1960), a typical rectangular plate element is first integrated in the framework of NMM. Then, vibration analysis of arbitrary shaped thin plates is conducted employing the tailored NMM. Using the definition of integral of scalar functions on manifolds, we developed a mathematically rigorous mass lumping scheme for creating a symmetric and positive definite lumped mass matrix that is easy to inverse. A series of numerical experiments have been studied and analyzed, including free and forced vibration of thin plates with various shapes, validating the proposed mass lumping scheme can supersede the consistent mass formulation in those cases. (C) 2018 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED MATHEMATICAL MODELLING
ISSN: 0307-904X
Year: 2019
Volume: 66
Page: 695-727
5 . 0 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:136
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 65
SCOPUS Cited Count: 66
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: