Indexed by:
Abstract:
Driver fatigue is an important reason for traffic accidents. To account for the temporal aspect of human fatigue, we propose a novel method based on dynamic features to detect fatigue from image sequences. First, global features are extracted from each image and concatenated into dynamic features. Then each feature is coded by the means of training samples, and weak classifiers are constructed on histograms of the coded features. Finally AdaBoost is applied to select the most critical features and establish a strong classifier for fatigue detection. The proposed method is validated under real-life fatigue conditions. The test data includes 600 image sequences with illumination and pose variations from thirty people's videos. Experiment results show the validity of the proposed method and the average recognition rate is 95.00% which is much better than the baselines. © 2008 Springer-Verlag Berlin Heidelberg.
Keyword:
Reprint Author's Address:
Source :
ISSN: 0302-9743
Year: 2008
Volume: 5009 LNAI
Page: 684-691
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12