• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Pan, Erzhuang (Pan, Erzhuang.) | Jin, Yuhong (Jin, Yuhong.) | Zhao, Chenchen (Zhao, Chenchen.) | Jia, Miao (Jia, Miao.) | Chang, Qianqian (Chang, Qianqian.) | Jia, Mengqiu (Jia, Mengqiu.)

Indexed by:

EI Scopus SCIE

Abstract:

Sn4P3 is one of the most promising anode materials for sodium ion batteries (SIBs) owning to the alloying reaction of P and Sn with Na to form Na3P and Na15Sn4, which is beneficial to achieve a high specific capacity, especially for the high volumetric capacity (6650 mAh cm(-3)). However, the high capacities generate large volume changes, which pulverize the anode material, resulting in poor cycling stability. This restricts its practical applications for SIBs. Here, the dopamine-derived N-doped carbon encapsulating hollow Sn4P3 microspheres (hollow Sn4P3@C) composites are prepared by an in-situ self-polymerization of dopamine on the surface of hollow SnO2 microspheres followed by a carbonization process and a low temperature phosphorization using NaH2PO2 as P source. The results of the structural and morphological characterization can be demonstrated that as-prepared hollow Sn4P3@C composites are constructed by hollow Sn4P3 microspheres with the ultrathin N-doped carbon coating. The as-prepared samples are tested as the anode materials for SIBs. Compared with bared hollow Sn4P3 microspheres, hollow Sn4P3@C composites exhibit better electrochemical sodium storage performance. As a result, hollow Sn4P3@C composites deliver the first discharge and charge specific capacities of 840 and 587 mAh g(-1) with a high initial coulombic efficiency of 70% at a current density of 0.2 Ag-1. Moreover, hollow Sn4P3@C composites display superior rate capabilities of 555, 438, 339, 239, 157 and 92 mAh g(-1) at 0.2 Ag-1, 0.5 Ag-1, 1 Ag-1, 2 Ag-1, 5 Ag-1 and 10 Ag-1, respectively. Meanwhile, hollow Sn4P3@C composites show a high discharge capacity of 372 mAh g(-1) at 0.2 A g(-1) after long 200 cycles. A detailed electrochemical kinetic analysis indicates that energy storage for Na thorn in Sn4P3 is due to a pseudocapacitive mechanism. The good electrochemical sodium storage performance of as-prepared hollow Sn4P3@C composites may be attributed to the introduction of N-doped carbon coating and unique hollow structure. Therefore, our work provides a new structure model for the development of new anode materials for SIBs. (C) 2018 Elsevier B.V. All rights reserved.

Keyword:

Anode materials N-doped carbon Hollow Sn4P3 microspheres Sodium ion batteries Dopamine

Author Community:

  • [ 1 ] [Pan, Erzhuang]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 2 ] [Jia, Miao]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 3 ] [Chang, Qianqian]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 4 ] [Jia, Mengqiu]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 5 ] [Jin, Yuhong]Beijing Univ Technol, Beijing Guyue New Mat Res Inst, Beijing 100124, Peoples R China
  • [ 6 ] [Zhao, Chenchen]Beijing Univ Technol, Beijing Guyue New Mat Res Inst, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Jia, Mengqiu]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China;;[Jin, Yuhong]Beijing Univ Technol, Beijing Guyue New Mat Res Inst, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF ALLOYS AND COMPOUNDS

ISSN: 0925-8388

Year: 2018

Volume: 769

Page: 45-52

6 . 2 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:260

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 43

SCOPUS Cited Count: 46

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:476/10554556
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.