• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Liu, Songbai (Liu, Songbai.) | Wang, Zhan (Wang, Zhan.) (Scholars:王湛) | Ban, Min (Ban, Min.) | Song, Peng (Song, Peng.) | Song, Xufeng (Song, Xufeng.) | Khan, Bushra (Khan, Bushra.)

Indexed by:

EI Scopus SCIE

Abstract:

In this work, we presented a facile and novel strategy, chelation-assisted in situ self-assembly, to prepare the loose polyacrylonitrile (PAN)-based nanocomposite membrane for dye desalination. Based on the chelate reaction polyethyleneimine (PEI) with metal ions, an Ag+-PEI complex layer was deposited onto the hydrolyzed PAN surface. Then, the chelate complex layer was served as the templates to in-situ synthesize the vitamin E succinate (VES)-functionalized AgCl nanoparticles , which were uniformly distributed on the membrane surface and provided additional transport pathways for water molecules. The prepared nanocomposite membrane achieved the permeability of 106.4, 101.2 and 92.3 L M-2 h(-1) MPa-1, which was 20-50% higher in comparison with that of the pure Ag+ -PEI@HPAN membrane, with corresponding rejections of 99.2%, 99.5% and 99.8% to crystal violet, acid fuchsin and congo red solution at the concentration of 0.1 g L-1. Meanwhile, this membrane possessed a low inorganic salts rejection (6.2%, 9.6% 8.3% and 12.8% for MgCl2, NaCl, MgCl2 and Na2SO4) and good stability during the 60 h filtration of dye-salt mixture. We anticipate that this novel route could be applied to prepare the polymer-supported nanocomposite membrane with enhanced separation performance.

Keyword:

Dye desalination Loose nanocomposite membrane Vitamin E succinate PAN substrate Chelation-assisted in situ self-assembly

Author Community:

  • [ 1 ] [Liu, Songbai]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Zhan]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Ban, Min]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Song, Peng]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [Song, Xufeng]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 6 ] [Khan, Bushra]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 王湛

    [Wang, Zhan]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF MEMBRANE SCIENCE

ISSN: 0376-7388

Year: 2018

Volume: 566

Page: 168-180

9 . 5 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:192

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 94

SCOPUS Cited Count: 96

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Online/Total:423/10617260
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.