Indexed by:
Abstract:
The present research performed a numerical simulation of laminar forced convection nanofluid-based non-Newtonian flow in a channel connecting a tank with heating regions. To achieve a rapid diffusion of heat, a cylindrical agitator is inserted into the tank. Power-law modelling is employed to describe the effect of non-Newtonian behaviour. The velocity and temperature fields and heat transfer coefficient ratio are studied systematically, taking into account the impact of various parameters, such as the generalised Reynolds number Re, generalised Prandtl number Pr, angular velocity of a cylinder omega, nanoparticle volume fraction phi, mixer size and location. Our research reveals that, to improve the heat transfer in practice, several applicable strategies are available, including the addition of more nanoparticles into the base fluid, which proved to be the most efficient method to enhance the heat transfer of a nanofluid.
Keyword:
Reprint Author's Address:
Email:
Source :
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
ISSN: 0932-0784
Year: 2018
Issue: 9
Volume: 73
Page: 869-882
1 . 8 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:192
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: