Indexed by:
Abstract:
The key to improving nanofiltration membrane permeance is reducing its thickness while maintaining high rejection. Herein, a 25 nm thick ultrathin polyamide layer was prepared by a microphase diffusion-controlled interfacial polymerization (MDC-IP) of poly(ethyleneimine) and trimesoyl chloride, which is much thinner than the conventional interfacial polymerization (CIP) polyamide layer. A new formation mechanism for such an ultrathin layer is presented, which included a microphase interfacial reaction and eliminated loose layers due to the confinement of microphase diffusion and the termination of stepwise diffusion. Moreover, the polyamide layer was post-cross-linked to form a stable dual-cross-linked interwoven structure. Such a membrane showed an ultrahigh permeance of 1246 kg/(m(2) h MPa), which was 23 times that of CIP membranes. MDC-IP could efficiently control the microinterface between two immiscible phases, which provided a facile way to regulate the membrane at nanoscale.
Keyword:
Reprint Author's Address:
Email:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2017
Issue: 51
Volume: 9
Page: 44820-44827
9 . 5 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:287
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 62
SCOPUS Cited Count: 69
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: