Indexed by:
Abstract:
This work experimentally studied the single-phase heat transfer and pressure drop characteristics by using two heat transfer enhancement techniques (micro fin structure and nanofluids) in multipart minichannel flat tube (MMFT). MMFT consisted of numerous parallel rectangular minichannels and is widely used in industry as the heat transfer unit of a heat exchanger. Firstly, the enhanced heat transfer performances by individually using one enhancement technique were investigated by testing Nusselt number, friction factor and performance evaluation criterion (PEC). In this section, five MMFTs with different micro fin numbers (N = 0, 1, 2, 3 and 4) and nanofluids with three volume concentrations (phi = 0.005%, 0.01% and 0.1%) were used as test sections and working fluids respectively. Secondly, the experiments using two combined enhancement technique were performed. By using conjunctively two enhancement techniques, Nusselt number increases by up to 158% at about Re = 3600 and the maximum PEC value can reach 2.0 at Re = 5150. Finally, an optimal heat transfer scheme was proposed based on test data. (C) 2016 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
EXPERIMENTAL THERMAL AND FLUID SCIENCE
ISSN: 0894-1777
Year: 2017
Volume: 81
Page: 21-32
3 . 2 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:165
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 39
SCOPUS Cited Count: 39
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: