Indexed by:
Abstract:
为研究患者肿瘤进展情况与各项指标之间的关系,以支持向量机(SVM)作为分类模型,根据各项检查指标预测肿瘤进展情况。设计三层粒子群优化算法(tlPSO)对SVM模型进行参数寻优,使用训练集建立分类模型,利用测试集评估模型性能,得到tlPSO-SVM模型。tlPSO算法能有效降低陷入局部最优解的机率,获取全局最优参数,从而使模型具有最优的分类性能。将血常规、中医症候、FACT评分等指标作为输入,肿瘤进展情况作为分类输出,建立分类模型并进行预测。实验结果表明,tlPSO-SVM模型准确率较高,具有较好的分类性能。
Keyword:
Reprint Author's Address:
Email:
Source :
计算机工程
ISSN: 1000-3428
Year: 2014
Issue: 7
Page: 198-201
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: