• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yuan, Jing (Yuan, Jing.) | Dai, Hongxing (Dai, Hongxing.) (Scholars:戴洪兴) | Zhang, Lei (Zhang, Lei.) | Deng, Jiguang (Deng, Jiguang.) | Liu, Yuxi (Liu, Yuxi.) | Zhang, Han (Zhang, Han.) | Jiang, Haiyan (Jiang, Haiyan.) | He, Hong (He, Hong.) (Scholars:何洪)

Indexed by:

CPCI-S EI Scopus SCIE

Abstract:

The three-dimensional (3D) macroporous orthorhombically crystallized perovskite-like oxides La2CuO4 were prepared using the polymethyl methacrylate (PMMA) microsphere-templating strategy with nitrates of lanthanum and copper as metal source and a mixed solution of methanol and ethylene glycol as solvent in the absence or presence of citric acid and after calcination at various atmospheres. The as-prepared materials were characterized by means of X-ray diffraction, N-2 adsorption-desorption, scanning electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature-programmed reduction. Catalytic activities of the materials were evaluated for the combustion of methane. The catalyst (La2CuO4-1) prepared with PMMA and citric acid possessed a 3D ordered macroporous (3DOM) structure and a surface area up to 46 m(2)/g, whereas the one (La2CuO4-2) prepared with PMMA but without citric acid exhibited a 3D wormhole-like macroporous structure and a surface area of 39 m(2)/g. There was the presence of a trace amount of La2O2CO3 phase in the La2CuO4-1 and La2CuO4-2 catalysts. The calcination procedure (first in N-2 flow at 700 degrees C and then in air flow at 300 and 800 degrees C, respectively) was crucial in forming the 3D porous structure of La2CuO4. The as-obtained catalysts had overstoichiometric oxygen. The La2CuO4-1 catalyst showed better low-temperature reducibility than the La2CuO4-2 and La2CuO4-Citrate (derived from the conventional citric acid-complexing route) catalysts. The 3D porous La2CuO4 materials performed well in catalyzing the oxidation of methane, with the La2CuO4-1 catalyst showing the best performance (the temperature for 90% CH4 conversion = 672 degrees C (reaction rate = ca. 40 mmol/(g h)) at CH4/O-2 molar ratio = 1/10 and space velocity = 50,000 mL/(g h). It is concluded that the excellent catalytic performance of La2CuO4-1 was mainly related to the higher surface area, better low-temperature reducibility, and 3DOM architecture. (C) 2011 Elsevier B.V. All rights reserved.

Keyword:

Hard-templating strategy lanthanum cuprate Low-temperature reducibility Methane combustion Three-dimensional macroporous Perovskite-like oxide catalyst

Author Community:

  • [ 1 ] [Yuan, Jing]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Dai, Hongxing]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Lei]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Deng, Jiguang]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Yuxi]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Han]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Jiang, Haiyan]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 8 ] [He, Hong]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 戴洪兴

    [Dai, Hongxing]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

CATALYSIS TODAY

ISSN: 0920-5861

Year: 2011

Issue: 1

Volume: 175

Page: 209-215

5 . 3 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 40

SCOPUS Cited Count: 44

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 14

Online/Total:588/10714294
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.