Indexed by:
Abstract:
针对系统噪声不确定情况下的惯性导航系统非线性初始对准问题,提出了一种基于自适应组合滤波的初始对准方法.首先给出了一种基于Kalman/UKF组合滤波的神经网络实时训练算法;进而提出了基于Kalman/UKF组合滤波的非线性系统状态估计方法,该算法利用神经网络在线估计系统噪声,并利用Kalman/UKF组合滤波在线同时估计初始对准的状态量和神经网络的权值;最后将该算法应用于惯性导航系统非线性初始对准问题中,并进行了仿真研究.仿真结果表明:自适应组合滤波算法不仅保证了初始对准的精度,而且具有更好的实时性,是解决惯性导航非线性初始对准问题的一种有效且实用的方法.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2009
Issue: 11
Volume: 35
Page: 1454-1459
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 2
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: