Indexed by:
Abstract:
针对基于Unscented卡尔曼滤波(UKF)的神经网络训练学习方法存在的计算量大,实时性差的问题,提出了一种基于Kalman/UKF组合滤波原理的神经网络学习方法,该方法综合了Kalman滤波对线性系统和UKF对非线性系统的最优估计的优势,在保证神经网络权值估计精度的同时,有效降低了神经网络权值学习的计算量,提高了神经网络训练的实时性。最后将该利用方法训练的神经网络应用于惯性导航系统的非线性初始对准过程中,并进行了仿真研究。仿真结果表明利用提出的算法训练的神经网络与基于UKF训练的神经网络具有相同的对准精度和实时性,而提出的算法的有效降低了神经网络训练的计算量,提高了训练的运行效率,是解决惯...
Keyword:
Reprint Author's Address:
Email:
Source :
系统仿真学报
Year: 2008
Issue: 23
Volume: 20
Page: 6494-6497
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: