Indexed by:
Abstract:
该文研究了捷联惯导在静基座下的初始对准问题,其中粗对准中采用磁罗盘和加速度计得到初始姿态角,精对准中采用具有最佳逼近性的径向基函数神经网络(RBF网络)修正姿态角.在RBF网络基函数中心选取时,基于样本分布特点,采用简单有效的均值法,同时为了增加了神经网络权值学习的鲁棒性和快速性,将H∞鲁棒滤波用于网络的权值调整中.仿真结果表明,采用这种优化学习的RBF神经网络进行初始对准比用传统的Kalman滤波更快速有效,且与Kalman滤波精度相当.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机仿真
ISSN: 1006-9348
Year: 2006
Issue: 4
Volume: 23
Page: 30-32,49
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 5
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: