Indexed by:
Abstract:
提出了一种新的模糊神经网络自组织算法,该算法能够基于输入输出数据自动进行结构辨识和参数辨识.首先采用一种自组织聚类方法建立起网络的结构和各参数的初值,然后采用监督学习来优化网络参数.通过对非线性函数逼近的分析,明了该自组织算法的有效性,并与其他算法作了比较.最后,以某污水处理厂的实际运行数据为对象,应用该模糊神经网络建立了活性污泥系统出水水质预测模型,仿真结果表明.该模型能够对污水处理系统出水水质进行较好的预测.
Keyword:
Reprint Author's Address:
Email:
Source :
控制理论与应用
ISSN: 1000-8152
Year: 2008
Issue: 4
Volume: 25
Page: 703-707
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 53
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: