Indexed by:
Abstract:
Using our recently developed in situ transmission electron microscopy techniques, we revealed that the FCC structured Ni nanowires with diameter of about 30 nm possess ultra-large strain plasticity. Dynamic complex dislocation activities mediated the large strain bent-plasticity and they were monitored at atomic scale in real time. The bent-induced strain gradient allows studying the strain effects on dislocation mediated plasticity. We also explored the deformation techniques to more general cases, the nano thin films. An example of tensile Pt ultra-thin film is presented.
Keyword:
Reprint Author's Address:
Email:
Source :
PRICM 7, PTS 1-3
ISSN: 0255-5476
Year: 2010
Volume: 654-656
Page: 2293-,
Language: English
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: