• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Hao (Chen, Hao.) | Guo, Hang (Guo, Hang.) (Scholars:郭航) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.)

Indexed by:

EI Scopus SCIE

Abstract:

Reactants and products distribute unevenly in flow channels of proton exchange membrane fuel cells, therefore, the baffle heights and locations in flow channels exhibit effects on species transportation. In this study, a two-dimensional, two-phase, non-isothermal, and steady state model is developed to study the baffle heights and locations effects on mass transportation and performance of the fuel cells with orientated-type channels. Simulation results show that: uniformly distributing baffles in a flow channel can both enhance the reactants transportation and help expel more liquid water, resulting in higher net powers; although using a big baffle at the upstream segment of a channel enhances the performance more, while the water accumulating is also increased more. Reducing the baffle heights accounts for weaker reactants transfer enhancements and worse liquid water expelling; moving the baffles backwardly also causes the decrease in reactant transportation, while the liquid water expelling process is increased. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Keyword:

Two-phase mass transfer Proton exchange membrane fuel cell Baffle location Baffle dimension Orientated-type flow channel

Author Community:

  • [ 1 ] [Guo, Hang]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Coll Energy & Power Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Energy & Power Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Coll Energy & Power Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

ISSN: 0360-3199

Year: 2021

Issue: 10

Volume: 46

Page: 7528-7545

7 . 2 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:87

JCR Journal Grade:2

Cited Count:

WoS CC Cited Count: 43

SCOPUS Cited Count: 47

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:545/10642784
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.