• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Hao (Chen, Hao.) | Guo, Hang (Guo, Hang.) (Scholars:郭航) | Ye, Fang (Ye, Fang.) | Fang, Chong (Fang, Chong.)

Indexed by:

EI Scopus SCIE

Abstract:

Orientated-type flow channels of proton exchange membrane fuel cells having baffles increase the cell performance, however, the higher power loss accounted by baffles, is a non-ignorable disadvantage. Previous literature proves that the baffles in channels cause the increase in power losses, while how the baffles affect the power losses, including the frictional losses and local losses, are still not analyzed before. Therefore, in this paper, a two-dimensional model is developed to study the friction loss and local loss in the flow channels with baffles. The numerical model, which couples the non-Darcy flow effect, is validated by comparing with self-conducted experimental results. Experimental and simulation results reveal that: orientated-type flow channels facilitate enhance the power output, and with the enlargement of baffles, the performance is further enhanced. In addition, the frictional losses and local losses in the orientated-type flow channels are comparatively studied by a numerical approach for the first time. It is found that using the materials with low surface roughness can decrease the friction loss; and avoiding sudden expanded segments at leeward sides of baffles can reduce the local loss. The experimental results and simulation results can further help improve the flow channel design. (c) 2021 Elsevier Ltd. All rights reserved.

Keyword:

Orientated-type flow channel Local loss Frictional loss Flow channel design Proton exchange membrane fuel cell

Author Community:

  • [ 1 ] [Guo, Hang]Beijing Univ Technol, Coll Energy & Power Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Energy & Power Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, Coll Energy & Power Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

RENEWABLE ENERGY

ISSN: 0960-1481

Year: 2022

Volume: 181

Page: 1338-1352

8 . 7

JCR@2022

8 . 7 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 16

SCOPUS Cited Count: 15

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Online/Total:823/10609131
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.