• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Hao (Chen, Hao.) | Guo, Hang (Guo, Hang.) (Scholars:郭航) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.)

Indexed by:

Scopus SCIE

Abstract:

A better-designed flow channel can enhance the mass transfer and improve the performance of a proton exchange membrane fuel cell. An orientated-type flow channel can achieve guidance on reactant and product transfers, resulting in an increase in the mass transfer flux and the rapid removal of the product (especially liquid water). In this study, flow fields with different orientated-type gas flow channels having different baffles are fabricated, and their effects on the current density outputs of proton exchange membrane fuel cells under various heating temperature and reactant flow rate conditions are investigated using a self-constructed testing system. The experimental results indicate that cell performance can be increased when using orientated-type flow channels with baffles having longer leeward sides, and cell performance is increased more under a suitable heating temperature. Moreover, the increase in the current densities of proton exchange membrane fuel cells with smaller baffles is limited when increasing the reactant flow rates. This limitation can be avoided when using the orientated-type flow channels with baffles having longer leeward sides. (c) 2020 American Society of Civil Engineers.

Keyword:

Orientated-type flow channels Operating condition Proton exchange membrane fuel cells Flow channel design Cell performance

Author Community:

  • [ 1 ] [Chen, Hao]Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Chong Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China
  • [ 5 ] [Chen, Hao]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 6 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 7 ] [Ye, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 8 ] [Ma, Chong Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China;;[Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF ENERGY ENGINEERING

ISSN: 0733-9402

Year: 2020

Issue: 6

Volume: 146

2 . 2 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:115

Cited Count:

WoS CC Cited Count: 27

SCOPUS Cited Count: 28

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:387/10586633
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.