Abstract:
可再生能源发电的随机波动性和储能运行控制的时间序列耦合特性给微电网的能量管理与最优运行带来了诸多挑战,成为学术界研究的热点问题。文中提出一种基于改进竞争深度Q网络算法的微电网能量管理与优化方法,采用多参数动作探索机制和优化设计的神经网络结构,对分布式可再生能源的功率输出、能源交易市场的电价和电力负荷的状态等环境信息进行学习,并运用学习到的策略进行微电网能量管理与优化。仿真结果表明,基于改进竞争深度Q网络算法的微电网能量管理与优化策略的性能优于基于场景的随机规划算法、深度Q网络算法和竞争深度Q网络算法。
Keyword:
Reprint Author's Address:
Email:
Source :
电力系统自动化
Year: 2022
Issue: 07
Volume: 46
Page: 42-49
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 18
Affiliated Colleges: