Indexed by:
Abstract:
Novel metal halide perovskite is proven to be a promising optoelectronic material. However, fabricating microscopic perovskite devices is still challenging because the perovskite is soluble with the photoresist, which conflicts with conventional microfabrication technology. The size of presently reported perovskite devices is about 50 mu m. Limited by the large size of perovskite optoelectronic devices, they cannot be readily adopted in the fields of imaging, display, etc. Herein a universal microscopic patterned doping method is proposed, which can realize microscale perovskite devices. Rather than by the conventional doping method, in this study the local Fermi level of perovskite is modulated by the redistributing intrinsic ion defects via a polling voltage. A satisfactorily stable polarized ion distribution can be achieved by optimization of the perovskite material and polling voltage, resulting in ultrafast (40 mu s), self-powered microscale (2 mu m) photodiodes. This work sheds light on a route to fabricate integrated perovskite optoelectronic chips.
Keyword:
Reprint Author's Address:
Source :
ADVANCED MATERIALS
ISSN: 0935-9648
Year: 2023
Issue: 28
Volume: 35
2 9 . 4 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:26
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: