Indexed by:
Abstract:
Anaerobic ammonium (NH4+ - N) oxidation coupled with sulfate (SO42−) reduction (sulfammox) is a new pathway for the autotrophic removal of nitrogen and sulfur from wastewater. Sulfammox was achieved in a modified up-flow anaerobic bioreactor filled with granular activated carbon. After 70 days of operation, the NH4+ - N removal efficiency almost reached 70%, with activated carbon adsorption and biological reaction accounting for 26% and 74%, respectively. Ammonium hydrosulfide (NH4SH) was found in sulfammox by X-ray diffraction analysis for the first time, which confirmed that hydrogen sulfide (H2S) was one of the sulfammox products. Microbial results indicated that NH4+ - N oxidation and SO42− reduction in sulfammox were carried out by Crenothrix and Desulfobacterota, respectively, in which activated carbon may operate as electron shuttle. In the 15NH4+ labeled experiment, 30N2 were produced at a rate of 34.14 μmol/(g sludge·h) and no 30N2 was detected in the chemical control group, proving that sulfammox was present and could only be induced by microorganisms. The 15NO3− labeled group produced 30N2 at a rate of 88.77 μmol/(g sludge·h), demonstrating the presence of sulfur-driven autotrophic denitrification. In the adding 14NH4+ and 15NO3− group, it was confirmed that NH4+ - N was removed by the synergy of sulfammox, anammox and sulfur-driven autotrophic denitrification, where the main product of sulfammox was nitrite (NO2−) and anammox was the main cause of nitrogen loss. The findings showed that SO42− as a non-polluting species to environment may substitute NO2− to create a new “anammox” process. © 2023 Elsevier Inc.
Keyword:
Reprint Author's Address:
Email:
Source :
Environmental Research
ISSN: 0013-9351
Year: 2023
Volume: 232
8 . 3 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:17
Cited Count:
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: