Indexed by:
Abstract:
Barium titanate (BaTiO3) piezoelectric ceramics with triply periodic minimal surface (TPMS) structures have been frequently used in filters, engines, artificial bones, and other fields due to their high specific surface area, high thermal stability, and good heat dissipation. However, only a limited number of studies have analyzed the effect of various parameters, such as different wall thicknesses and porosities of TPMS structures, on ceramic electromechanical performance. In this study, we first employed vat photopolymerization (VPP) three-dimensional (3D) printing technology to fabricate high-performance BaTiO3 ceramics. We investigated the slurry composition design and forming process and designed a stepwise sintering postprocessing technique to achieve a density of 96.3% and a compressive strength of 250 +/- 25 MPa, with the piezoelectric coefficient (d33) reaching 263 pC/N. Subsequently, we explored the influence of three TPMS structures, namely, diamond, gyroid, and Schwarz P, on the piezoelectric and mechanical properties of BaTiO3 ceramics, with the gyroid structure identified as exhibiting optimal performance. Finally, we examined the piezoelectric and mechanical properties of BaTiO3 ceramics with the gyroid structure of varying wall thicknesses and porosities, thus enabling the modulation of ceramic electromechanical performance.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF ADVANCED CERAMICS
ISSN: 2226-4108
Year: 2024
Issue: 7
Volume: 13
Page: 987-1001
1 6 . 9 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: