Indexed by:
Abstract:
A novel self-excited oscillating mixer is developed for the descaling of strip steel, which synthesizes the post-mixed abrasive water jet and self-excited oscillation. The realizable k-e model is selected to investigate the effects of different abrasive entrance, inlet pressure, mixing chamber diameter, and length on the jet characteristics. Meanwhile, the effects of different inlet pressure and target distance on the outlet velocities for two kinds of mixers (including the developed mixer and conventional post-mixing mixer) with or without abrasive jet are investigated through simulation. Experiment as well as simulation results exhibited: (1) The oblique abrasive entrance can accelerate the mixture of water and abrasive due to its larger turbulent kinetic energy, and its outlet velocity is larger than that of radial and axial abrasive entrances. (2) For the developed mixer, the outlet velocity is preferable when the mixing chamber diameter is about 40-50 mm and the mixing chamber length is 20 mm. (3) The descaling efficiency of the developed mixer is superior to that of conventional post-mixing mixer. The research will lay foundation to optimize the structure of self-excited oscillating mixer for the descaling of rusty steel.
Keyword:
Reprint Author's Address:
Email:
Source :
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING
ISSN: 0954-4089
Year: 2019
Issue: 5
Volume: 233
Page: 1109-1127
2 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:136
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: