Indexed by:
Abstract:
The objective of this work is to study the influence of error induced by gas film in micro scale on the static and dynamic behavior of a shaft supported by the aerostatic bearings. The static and dynamic balance models of the aerostatic bearing are presented by the calculated stiffness and damping in micro scale. The static simulation shows that the deformation of aerostatic spindle system in micro scale is decreased. For the dynamic behavior, both the stiffness and damping in axial and radial directions are increased in micro scale. The experiments of the stiffness and rotation error of the spindle show that the deflection of the shaft resulting from the calculating parameters in the micro scale is very close to the deviation of the spindle system. The frequency information in transient analysis is similar to the actual test, and they are also higher than the results from the traditional case without considering micro factor. Therefore, it can be concluded that the value considering micro factor is closer to the actual work case of the aerostatic spindle system. These can provide theoretical basis for the design and machining process of machine tools. (C) 2017 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
MECHANICAL SYSTEMS AND SIGNAL PROCESSING
ISSN: 0888-3270
Year: 2018
Volume: 105
Page: 488-501
8 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:156
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 25
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: