Indexed by:
Abstract:
The effect of Si addition on phase separation and soft magnetic properties of [Cu-0.6(FeCrC)(0.4)]100-Si-x(x) (x = 3 and 8) immiscible composites produced by laser induction hybrid cladding (LIHC) has been investigated. The duplex structure of immiscible composites was composed of many Fe-rich particles dispersed within Cu-rich upper layer and large amounts of Cu-rich particles embedded within Fe-rich lower layer. However, the increasing Si addition not only induced the precipitation of intermetallic compound Cu6.69Si within Cu-rich upper layer, but also increased the area of Fe-rich layer, the size of Fe-and Cu-rich particles, as well as the solubility of Si in Fe-and Cu-rich phases. Moreover, the microhardness of Fe-and Cu-rich layers was increased to 747.3HV(0.2) and 302.6HV(0.2) in the Cu-55.2(FeCrC)(36.8)Si-8 immiscible composite, respectively, which was similar to 1.6 and similar to 1.8 times higher than that in the Cu-58.2(FeCrC)(38.8)Si-3 immiscible composite, due to solid-solution strengthening and dispersion strengthening. Compared to the Cu-58.2(FeCrC)(38.8)Si-3 immiscible composite, the Cu-55.2(FeCrC)(36.8)Si-8 immiscible composite presented a saturated magnetization of 13.7 emu/g, relatively lower coercivity of 24.9 Oe and higher Curie temperature of larger than 400 K due to appearance of ferromagnetic alpha-Fe(Si) phase. (C) 2017 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF ALLOYS AND COMPOUNDS
ISSN: 0925-8388
Year: 2018
Volume: 732
Page: 740-747
6 . 2 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:260
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: