Indexed by:
Abstract:
Skyrmions with topologically nontrivial spin textures are promising information carriers in next-generation ultralow power consumption and high-density spintronic devices. To promote their further development and utilization, the search for new room temperature skyrmion-hosting materials is crucial. Considering that most of the previous skyrmion-hosting materials are noncollinear magnets, here, the detection of the topological Hall effect (THE) and the discovery of skyrmions at room temperature are first reported in a centrosymmetric complex noncollinear ferromagnet NdMn2Ge2. Below 330 K, the compound can host stable Bloch-type skyrmions with about 75 nm diameter in a wide window of magnetic field and temperature, including zero magnetic field and room temperature. Moreover, the skyrmions can induce a giant topological Hall effect in a wide temperature range with a maximum value of -2.05 mu Omega cm. These features make the compound attractive for both fundamental research and potential application in novel spintronic devices.
Keyword:
Reprint Author's Address:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2020
Issue: 21
Volume: 12
Page: 24125-24132
9 . 5 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:169
Cited Count:
WoS CC Cited Count: 23
SCOPUS Cited Count: 24
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: