• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Zhe (Wang, Zhe.) | Yan, Bo (Yan, Bo.) | Wu, Chunhua (Wu, Chunhua.) | Wu, Bin (Wu, Bin.) | Wang, Xiujuan (Wang, Xiujuan.) | Zheng, Kangfeng (Zheng, Kangfeng.)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

Cross-domain relation extraction has become an essential approach when target domain lacking labeled data. Most existing works adapted relation extraction models from the source domain to target domain through aligning sequential features, but failed to transfer non-local and non-sequential features such as word co-occurrence which are also critical for cross-domain relation extraction. To address this issue, in this paper, we propose a novel tripartite graph architecture to adapt non-local features when there is no labeled data in the target domain. The graph uses domain words as nodes to model the co-occurrence relation between domain-specific words and domain-independent words. Through graph convolutions on the tripartite graph, the information of domain-specific words is propagated so that the word representation can be fine-tuned to align domain-specific features. In addition, unlike the traditional graph structure, the weights of edges innovatively combine fixed weight and dynamic weight, to capture the global non-local features and avoid introducing noise to word representation. Experiments on three domains of ACE2005 datasets show that our method outperforms the state-of-the-art models by a big margin.

Keyword:

non-local features graph convolution network relation extraction domain adaptation

Author Community:

  • [ 1 ] [Wang, Zhe]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 2 ] [Wu, Chunhua]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 3 ] [Wu, Bin]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 4 ] [Zheng, Kangfeng]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 5 ] [Yan, Bo]Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
  • [ 6 ] [Wang, Xiujuan]Beijing Univ Technol, Sch Comp Sci, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Yan, Bo]Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

SENSORS

Year: 2020

Issue: 24

Volume: 20

3 . 9 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:139

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:2153/10895657
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.