Indexed by:
Abstract:
In this study, by using the nonequilibrium molecular dynamics and the kinetic theory, we examine the tailored nanoscale thermal transport via a gas-filled nanogap structure with mechanically-controllable nanopillars in one surface only, i.e., changing nanopillar height. It is found that both the thermal rectification and negative differential thermal resistance (NDTR) effects can be substantially enhanced by controlling the nanopillar height. The maximum thermal rectification ratio can reach 340% and the increment T range with NDTR can be significantly enlarged, which can be attributed to the tailored asymmetric thermal resistance via controlled adsorption in height-changing nanopillars, especially at a large temperature difference. These tunable thermal rectification and NDTR mechanisms provide insights for the design of thermal management systems.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF THERMAL SCIENCE
ISSN: 1003-2169
Year: 2022
Issue: 4
Volume: 31
Page: 1084-1093
2 . 5
JCR@2022
2 . 5 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: