• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, Li (Zhang, Li.) | Lan, Shuang (Lan, Shuang.) | Dou, Quanhao (Dou, Quanhao.) | Hao, Shiwei (Hao, Shiwei.) | Wang, Yueping (Wang, Yueping.) | Peng, Yongzhen (Peng, Yongzhen.)

Indexed by:

Scopus SCIE

Abstract:

The zero-valent iron-anaerobic ammonium oxidation (ZVI-anammox) system has received widespread attention due to its excellent nitrogen removal performance and user-friendly operation. However, its disadvantages include a short service life, high ZVI consumption, and poor system stability. The use of ultrasound as a physical method is increasing in various water treatment processes. In this study, a series of batch tests were conducted to obtain the best ultrasonic parameter and explore the comprehensive effects of ultrasound on a ZVI-anammox system. The highest specific anammox activity of the ZVI-anammox system was found to be 2.88 mg total nitrogen/g of volatile suspended solids/h after ultrasonic treatment (0.2 w/mL, 5 min), which was 37.85% higher than a control group. Additionally, the service life of ZVI extended by 28.57% and the total nitrogen removal efficiency changed from 58.03-72.08 to 63.92-78.33% under ultrasonic irradiation. These phenomena were related to the mechanical force and cavitation of ultrasonic waves. Judging from the characteristics of sludge and ZVI, ultrasound can promote anammox sludge granulation, ease ZVI passivation, and enhance the stability of the entire system. This paper also briefly discusses the impact mechanisms of ultrasound on the ZVI-anammox system. In brief, ultrasound destroys the surface structure of ZVI and thus provides numerous attachment points for microorganisms that improve the performance of the entire system. The proposed ultrasound combined with ZVI is a novel method that has potential for use in large-scale engineering applications in actual sewage treatment after comprehensive analysis.

Keyword:

Low-density ultrasound Zero-valent iron Engineering application Anammox Nitrogen removal Promotion mechanisms Metal passivation

Author Community:

  • [ 1 ] [Zhang, Li]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Lan, Shuang]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 3 ] [Dou, Quanhao]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 4 ] [Hao, Shiwei]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Yueping]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 6 ] [Peng, Yongzhen]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH

ISSN: 0944-1344

Year: 2022

Issue: 25

Volume: 29

Page: 37266-37276

5 . 8

JCR@2022

5 . 8 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:47

JCR Journal Grade:1

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 5

SCOPUS Cited Count: 5

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Affiliated Colleges:

Online/Total:543/10582540
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.