Indexed by:
Abstract:
Sustainable development goals of cities have long been threatening by the low efficiency and negative externalities of the truck-dominant forward and reverse physical distribution activities. Aiming at conquering the dilemma, this paper offers a novel integrated underground logistics system (IULS) solution that has good applicability to incorporate the wholesale automated operations of construction and demolition waste (CDW) collection, municipal solid waste (MSW) collection, and parcel deliveries. In line with a Chinese on-going new urban district development project, the prototypes of IULS including network topology, facility operations, handling workflows, and transport technical parameters are designed. An empirical-based method is proposed to estimate the demand flows of heterogeneous CDW and parcels for IULS planning. Based on a well-designed multiperiod network expansion mechanism, a bi-objective dynamic programming model is established to characterize the optimal location-allocation-routing decisions of IULS network at minimal construction and operating costs. Given the computational complexity, a hybrid optimization approach combining variable neighborhood search based memetic algorithm, Kruskal's minimum spanning tree algorithm, and A-star algorithm is developed to obtain high-quality model solutions. Simulation based on real-world case is conducted to validate our planning techniques. Results show that the dual-use and multi-period expansion of IULS network can save millions of dollars of annual environmental governance expenditures for a satellite city with substantial rebuilding and distribution needs. By analyzing the facility configurations and cost-benefit performance of the optimized network solutions, a set of insights related to the best layout, economic feasibility, and long-term development for the prospective IULS network initiatives are disclosed.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF CLEANER PRODUCTION
ISSN: 0959-6526
Year: 2021
Volume: 330
1 1 . 1 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:87
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 15
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: