Indexed by:
Abstract:
In this work, the negative differential thermal resistance effect has been proposed in a solid-liquid-solid sand-wiched system with a nanostructured cold surface. Non-equilibrium molecular dynamics simulations demon-strate that the heat flux in the present sandwiched system increases with the temperature bias for low temperature bias, while for high temperature bias, the heat flux decreases counter-intuitively with increasing temperature bias. Based on the analysis of the interfacial thermal resistance and the density depletion length at the solid-liquid interface, the negative differential thermal resistance effect at high temperature bias is attributed to the suppressed solid-liquid interfacial thermal conductance with decreasing temperature. In addition, it is found that the negative differential thermal resistance effect can be tuned by the size of the nanostructure.
Keyword:
Reprint Author's Address:
Email:
Source :
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER
ISSN: 0735-1933
Year: 2023
Volume: 142
7 . 0 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: