Indexed by:
Abstract:
Homogeneously dispersed ultrafine CoFe2O4 nanoparticles embedded within N-doped carbon nanofibers (named as CFO@NCNFs) have been fabricated via electrospinning and following heat treatment procedures. The dielectric and magnetic parameters of CFO@NCNFs/paraffin wax composites are regulated through adjusting the concentration of CoFe2O4 to obtain good impedance matching and excellent microwave absorption (MA) properties. Benefiting from the unique structure involving CoFe2O4 @onion-like carbon nanospheres and 3D conductive NCNFs network, as well as the synergistic mechanism between ultrasmall magnetic CoFe2O4 nano-particles and light mass dielectric NCNFs. The CFO@NCNFs-5 exhibit outstanding MA properties at only 20 wt% filler loading and minimum reflection loss (RL) achieves-47.9 dB (surpass 99.9% MA) at 9.2 GHz with a thin thickness of merely 1.7 mm, and the corresponding effective absorption bandwidth (RL <-10 dB) achieves 5.4 GHz (6.5-11.9 GHz). Moreover, the effective absorption bandwidth (EAB) can be obtained in multiband (3.9-18.0 GHz) by adjusting the thickness of sample layer. Our work indicates that the appropriate incorporation of ultrafine CoFe2O4 nanoparticles encapsulated in NCNFs is a versatile and high-efficiency strategy to integrate lightweight and excellent properties of magnetic carbon-based absorbers.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF ALLOYS AND COMPOUNDS
ISSN: 0925-8388
Year: 2023
Volume: 965
6 . 2 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:26
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: