• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Zhiying (Chen, Zhiying.) | Dai, Yanwei (Dai, Yanwei.) (Scholars:代岩伟) | Liu, Yinghua (Liu, Yinghua.)

Indexed by:

EI Scopus SCIE

Abstract:

A fatigue crack growth rate model introducing corrosion damage is proposed in this paper, where the fracture parameter is modified by the damage variable and the exponential influence factor. The corrosion damage mechanism is coupled to the crack growth rate model, which quantifies the influence of the environment and reflects the interaction between corrosion and fatigue. To accurately predict the corrosion-fatigue crack growth life by the extended finite element method (XFEM), a simple crack surface updating method is developed. This method does not depend on the complex level set marching algorithm which often brings serious computational convergence problem, so it has good robustness and high efficiency. Moreover, the stress intensity factors at arbitrary crack tip can be calculated by combining the interaction integral method and the piecewise interpolation method, so it is suitable for the double crack-tip problem. The corrosionfatigue crack growth life is calculated based on the cycle-by-cycle method and the corresponding algorithm is developed. The corrosion-fatigue crack growth life can be accurately predicted by calculating the corrosion damage and crack propagation length under each load cycle. In this paper, sufficient examples are given to verify the accuracy of the proposed method in simulating crack propagation path and predicting corrosion-fatigue life. Finally, this method is well applied to a practical engineering structure.

Keyword:

Extended finite element method Crack growth rate model Fatigue life calculation Corrosion damage Crack surface update

Author Community:

  • [ 1 ] [Chen, Zhiying]Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
  • [ 2 ] [Liu, Yinghua]Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
  • [ 3 ] [Dai, Yanwei]Beijing Univ Technol, Fac Mat & Mfg, Inst Elect Packaging Technol & Reliabil, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

ENGINEERING FRACTURE MECHANICS

ISSN: 0013-7944

Year: 2023

Volume: 289

5 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count: 12

SCOPUS Cited Count: 14

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Affiliated Colleges:

Online/Total:468/10598979
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.