Indexed by:
Abstract:
Third-generation semiconductor SiC has the advantages of large band gap, fast carrier saturation migration speed and high critical breakdown electric field strength. These characteristics make SiC based electronic devices modification technology an important research significance in the field of high-performance light-emitting devices, high power and high-frequency devices. However, due to wide bandgap and complex surface state of SiC, the regulation of its luminescent properties and fabrication of excellent Ohmic contact with SiC/metal interface are always difficult that significantly influence the working performance and development in SiC devices. In this paper, we introduce the mechanism of light-emission regulation in broad band of blue and ultraviolet/white light photoluminescence by high energy laser irradiation on SiC single crystal surface. Studies determine that surface modification mechanism of laserinduced C-atomic defect state for electrical transmission and improvement of electrical contact performance of SiC surface. © 2021 SPIE.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0277-786X
Year: 2021
Volume: 11907
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: