Indexed by:
Abstract:
Ag-Cu nanoparticles, integrating the advantages of Ag and Cu, are promising materials for power electronic packaging. In this work, a novel dual-beam pulsed laser deposition method was proposed to prepare an Ag-Cu nanoparticle film with various component ratios and used for die attach at low temperatures. The as-deposited Ag-Cu nanoparticle film was mainly composed of Ag-Cu solid solution, Ag element, and Cu element, and most of the nanoparticles were in the alloying state. The Ag-Cu sintered joint presented a dense microstructure with 10.8% porosity, and the shear strength of Ag-Cu sintered joints could reach 60 MPa at 250 C-degrees. The sintered joint porosity increased as more Cu were added in the Ag-Cu nanoparticle film, resulting in a decrease in the interfacial connection ratio. The fracture mode of sintered joints gradually changed from the sintered layer to the mixed sintered layer and interface fracture. The dual-beam pulsed laser deposition method could guide in designing the component ratios of bimetallic nanoparticles.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF LASER APPLICATIONS
ISSN: 1042-346X
Year: 2024
Issue: 2
Volume: 36
2 . 1 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: