• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Shang, W.-L. (Shang, W.-L..) | Ling, Y. (Ling, Y..) | Ochieng, W. (Ochieng, W..) | Yang, L. (Yang, L..) | Gao, X. (Gao, X..) | Ren, Q. (Ren, Q..) | Chen, Y. (Chen, Y..) | Cao, M. (Cao, M..)

Indexed by:

EI Scopus SCIE

Abstract:

In tandem with the urbanisation process, China's transport sector is currently experiencing rapid development and was ranked third out of all the industrial sectors in terms of generating CO2 emissions in 2020, which poses a huge challenge to achieving carbon neutrality. Primarily using the energy consumption data from China's transport, storage and postal sectors (TSPS) and input and output data between 2007 and 2020, this study first uses the Tapio decoupling model to evaluate the decoupling effect in the TSPS. Structural decomposition analysis is then applied to explore sectoral linkages and decompose the forces driving CO2 emissions. Additionally, we explore the main determinants of the energy structure effect and final demand in terms of energy consumption and industrial sector demand. Our results show that the target sector experienced a weak decoupling, which implies that the low-carbon transformation of this sector became increasingly apparent. Factor decomposition shows that improvements in energy intensity, energy structure and the production input and output structure have contributed significantly to reducing CO2 emissions, but these gains have been largely offset by final demand, resulting in a net reduction of 27.97 million tons from 2007 to 2020. The increased usage of low carbon forms of energy, such as natural gas, is the key driver behind the emissions reduction effect in terms of the energy structure. However, the higher final demand from the construction sector and the wholesale and retail trades are the main factors that have increased CO2 emissions. By adopting a sectoral and energy structure decomposition perspective, our study can be used to provide guidance to governments seeking to pursue carbon-reduction policies to achieve carbon peak and carbon neutrality, in the TSPS in particular. © 2024 Elsevier Ltd

Keyword:

Sustainable transport Carbon dioxide emissions Structural decomposition analysis Carbon neutrality

Author Community:

  • [ 1 ] [Shang W.-L.]College of Metropolitan Transportation, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Shang W.-L.]Department of Civil and Environmental Engineering, Centre for Transport Studies, Imperial College London, SW7 2AZ, United Kingdom
  • [ 3 ] [Shang W.-L.]School of Architecture and Cities, University of Westminster, London, NW1 5LS, United Kingdom
  • [ 4 ] [Ling Y.]School of Economics and Finance, Chongqing University of Technology, Chongqing, 400054, China
  • [ 5 ] [Ochieng W.]Department of Civil and Environmental Engineering, Centre for Transport Studies, Imperial College London, SW7 2AZ, United Kingdom
  • [ 6 ] [Yang L.]Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu, 611756, China
  • [ 7 ] [Gao X.]School of Humanities and Social Sciences, Beijing Institute of Technology, Beijing, 100081, China
  • [ 8 ] [Ren Q.]School of Economics and Finance, Chongqing University of Technology, Chongqing, 400054, China
  • [ 9 ] [Chen Y.]School of Environment, Beijing Normal University, Beijing, 100875, China
  • [ 10 ] [Cao M.]School of Architecture and Cities, University of Westminster, London, NW1 5LS, United Kingdom
  • [ 11 ] [Cao M.]Bartlett School of Environment, Energy and Resources, University College London, London, WC1H 0NN, United Kingdom

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Applied Energy

ISSN: 0306-2619

Year: 2024

Volume: 365

1 1 . 2 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 11

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Affiliated Colleges:

Online/Total:349/10554073
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.