Indexed by:
Abstract:
Magnetic skyrmions are topologically nontrivial spin configurations that possess particle-like properties. Earlier research has mainly focused on a specific type of skyrmion with topological charge Q = -1. However, theoretical analyses of 2D chiral magnets have predicted the existence of skyrmion bags-solitons with arbitrary positive or negative topological charge. Although such spin textures are metastable states, recent experimental observations have confirmed the stability of isolated skyrmion bags in a limited range of applied magnetic fields. Here, by utilizing Lorentz transmission electron microscopy, the extraordinary stability of skyrmion bags in thin plates of B20-type FeGe is shown. In particular, it is shown that skyrmion bags embedded within a skyrmion lattice remain stable even in zero or inverted external magnetic fields. A robust protocol for nucleating such embedded skyrmion bags is provided. The results agree perfectly with micromagnetic simulations and establish thin plates of cubic chiral magnets as a powerful platform for exploring a broad spectrum of topological magnetic solitons.
Keyword:
Reprint Author's Address:
Source :
ADVANCED MATERIALS
ISSN: 0935-9648
Year: 2024
Issue: 36
Volume: 36
2 9 . 4 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: