Indexed by:
Abstract:
Field-free magnetization switching driven by spin-orbit torque (SOT) is an up-and-coming solution for spintronic devices, which enables energy efficient reconfigurable logic-in-memory computing is well-suited for next-generation data-intensive applications. However, the use of ferromagnetic/antiferromagnetic systems in flexible spin logic devices is still in the early stages of development. Here, a polyimide/Ta/Pt/Co/IrMn/Pt-based devices are reported as a potential candidate for flexible field-free programmable spin logic applications. By controlling the exchange bias at the Co/IrMn interface, the flexible Hall bar device has successfully realized SOT-induced magnetization switching under zero field. Basing on its magnetization switching capability, the devices can realize all-electric controlled flexible programmable spin logic. Using two Hall bar devices, AND, NOT, OR, NAND, and NOR Boolean logic functions can be achieved by controlling the path of the pulse current, which provides a new solution for flexible spin-logic devices with all-electric manipulation.
Keyword:
Reprint Author's Address:
Email:
Source :
ADVANCED FUNCTIONAL MATERIALS
ISSN: 1616-301X
Year: 2025
1 9 . 0 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: