Indexed by:
Abstract:
The excellent properties of III-V semiconductors make them intriguing candidates for next-generation electronics and optoelectronics. Their nanowire (NW) counterparts further provide interesting geometry and a quantum confinement effect which benefits various applications. Among the many members of all the III-V semiconductors, III-antimonide NWs have attracted significant research interest due to their narrow, direct bandgap and high carrier mobility. However, due to the difficulty of NW fabrication, the development of III-antimonide NWs and their corresponding applications are always a step behind the other III-V semiconductors. Until recent years, because of advances in understanding and fabrication techniques, electronic and optoelectronic devices based on III-antimonide NWs with novel performance have been fabricated. In this review, we will focus on the development of the synthesis of III-antimonide NWs using different techniques and strategies for fine-tuning the crystal structure and composition as well as fabricating their corresponding heterostructures. With such development, the recent progress in the applications of III-antimonide NWs in electronics and optoelectronics is also surveyed. All these discussions provide valuable guidelines for the design of III-antimonide NWs for next-generation device utilization.
Keyword:
Reprint Author's Address:
Email:
Source :
NANOTECHNOLOGY
ISSN: 0957-4484
Year: 2019
Issue: 20
Volume: 30
3 . 5 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:211
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 28
SCOPUS Cited Count: 28
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: