• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Fan, T. (Fan, T..) | Liu, F. R. (Liu, F. R..) (Scholars:刘富荣) | Li, W. Q. (Li, W. Q..) | Guo, J. C. (Guo, J. C..) | Wang, Y. H. (Wang, Y. H..) | Sun, N. X. (Sun, N. X..) | Liu, F. (Liu, F..)

Indexed by:

EI Scopus SCIE

Abstract:

Accumulated crystallization characteristics of amorphous Ge2Sb2Te5 (a-GST) films induced by multi-pulsed laser irradiations with different fluences were investigated by x-ray diffraction (XRD), Raman spectroscopy and spectrophotometer. Solid-state transformation was performed at low fluence (LF, 30.5 mJ cm(-2)), whereas melting-cooling transformation dominated at medium and high fluence (MF, 45.7 and HF, 61 mJ cm(-2)). Solid-state transformation induced by subsequent LF pulses promoted the growth and coalescence of grains, linearly increasing the average grain size, accordingly causing blue-shifts of the Raman spectral peaks. For MF/HF pulse irradiated films, the relatively high laser fluence increased the melting depth and reduced the volume fraction of the crystalline state induced by individual pulses, thereby increasing the threshold of laser pulse numbers for XRD detectable crystallization. However, the remelting depth induced by subsequent MF/HF laser pulse progressively decreased. The remelting-recrystallization process refined grain sizes, which improved the red-shifts of Raman spectral peaks. Moreover, optical contrast increased dramatically compared to single laser irradiation and five-level storage could be realized for a linear increase of optical contrast. The present study is fundamental for realizing the potential of multi-level devices.

Keyword:

multi-pulsed laser accumulated crystallization laser fluences Ge2Sb2Te5

Author Community:

  • [ 1 ] [Fan, T.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, F. R.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Li, W. Q.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Guo, J. C.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Y. H.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Fan, T.]Beijing Univ Technol, Beijing Engn Res Ctr Appl Laser Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Liu, F. R.]Beijing Univ Technol, Beijing Engn Res Ctr Appl Laser Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Li, W. Q.]Beijing Univ Technol, Beijing Engn Res Ctr Appl Laser Technol, Beijing 100124, Peoples R China
  • [ 9 ] [Guo, J. C.]Beijing Univ Technol, Beijing Engn Res Ctr Appl Laser Technol, Beijing 100124, Peoples R China
  • [ 10 ] [Wang, Y. H.]Beijing Univ Technol, Beijing Engn Res Ctr Appl Laser Technol, Beijing 100124, Peoples R China
  • [ 11 ] [Sun, N. X.]Northeastern Univ, Elect & Comp Engn Dept, Boston, MA 02115 USA
  • [ 12 ] [Liu, F.]Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian, Shaanxi, Peoples R China

Reprint Author's Address:

  • 刘富荣

    [Liu, F. R.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China;;[Liu, F. R.]Beijing Univ Technol, Beijing Engn Res Ctr Appl Laser Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

SEMICONDUCTOR SCIENCE AND TECHNOLOGY

ISSN: 0268-1242

Year: 2018

Issue: 7

Volume: 33

1 . 9 0 0

JCR@2022

ESI Discipline: PHYSICS;

ESI HC Threshold:145

Cited Count:

WoS CC Cited Count: 9

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:532/10648421
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.