• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, X. (Wang, X..) | Guo, Z. (Guo, Z..) | Zhang, D. (Zhang, D..) | Yan, Y. (Yan, Y..) | Yu, Y. (Yu, Y..) | Du, B. (Du, B..) | Zhang, Z. (Zhang, Z..)

Indexed by:

Scopus SCIE

Abstract:

The widespread use of phenylurea herbicides (PHs) is a serious threat to human health and environmental safety. These pollutants usually have similar molecular structures but distinct toxicities. Therefore, developing rapid detection methods to analyze PHs quantitatively and qualitatively is highly desirable. This study fabricated a microfluidic glass liquid chromatography (LC) coupled with electrochemical detection (ECD) and Surface-Enhanced Raman spectroscopy (SERS) synchronous system, which demonstrated excellent separation and analysis performance for PHs. The complete separation of three PHs could be achieved using the microfluidic chip LC with a theoretical plate number of 342525 plates m–1. The limit of detection (LOD) of the PHs for optimized electrochemical analysis reached 0.0099–0.1388 mmol/L. More importantly, the detection system integrated with ECD and SERS had high sensitivity and molecular recognition ability, with intra and inter-day precision of less than 6.7630% and 7.5601%, respectively. The recovery of the PHs could reach 102.9861% when this detection system was applied to the analysis of soil extracts in the small potted plant and actual water samples in the environment. It is expected that the microfluidic chip with the LC-ECD-SERS synchronous detection system has significant potential in various environmental, food safety, drug, and biomedical analyses. © 2024 Elsevier B.V.

Keyword:

Microfluidic chip Electrochemical detection Surface-Enhanced Raman spectroscopy

Author Community:

  • [ 1 ] [Wang X.]Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Guo Z.]Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Zhang D.]Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Yan Y.]Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China
  • [ 5 ] [Yu Y.]Center for Environmental Metrology, National Institute of Metrology, Beijing, 100029, China
  • [ 6 ] [Du B.]Beijing Yixingyuan Petrochemical Technology Co., Ltd, Beijing, 101301, China
  • [ 7 ] [Zhang Z.]Center for Environmental Metrology, National Institute of Metrology, Beijing, 100029, China
  • [ 8 ] [Wang X.]Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Sensors and Actuators B: Chemical

ISSN: 0925-4005

Year: 2024

Volume: 407

8 . 4 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:707/10621482
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.