• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Jin, Cheng-Gang (Jin, Cheng-Gang.) | Zhang, Wen-Hai (Zhang, Wen-Hai.) | Tian, Na (Tian, Na.) | Wu, Bin (Wu, Bin.) | Yin, Ming-Jie (Yin, Ming-Jie.) | An, Quan-Fu (An, Quan-Fu.) (Scholars:安全福)

Indexed by:

EI Scopus SCIE

Abstract:

Organic solvent nanofiltration (OSN) plays important roles in pharmaceutical ingredients purification and solvent recovery. However, the low organic solvent permeance under cross-flow operation of OSN membrane hampers their industrial applications. Herein, we report the construction of coffee-ring structured membrane featuring high OSN permeance. A water-insoluble crystal monomer that dissolved in EtOH/H2O mixed solvent was designed to react with trimesoyl chloride via interfacial polymerization. Owing to the diffusion of EtOH to n-hexane, coffee-ring nanostructure on the support membrane appeared, which served as the template for construction of coffee-ring structured membrane. The optimal nanostructured membrane demonstrated 2.6-fold enhancement in the effective surface area with reduced membrane thickness. Resultantly, the membrane afforded a 2.7-fold enhancement in organic solvent permeance, e.g., similar to 13 LMH/bar for MeOH, without sacrificing the rejection ability. Moreover, due to the rigid monomer structure, the fabricated membrane shows distinctive running stability in active pharmaceutical ingredients purification and the ability for concentration of medicines.

Keyword:

interfacial polymerization organic solvent nanofiltration coffee ring

Author Community:

  • [ 1 ] [Jin, Cheng-Gang]Beijing Univ Technol, Coll Mat Sci & Engn, Dept Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Wen-Hai]Beijing Univ Technol, Coll Mat Sci & Engn, Dept Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Tian, Na]Beijing Univ Technol, Coll Mat Sci & Engn, Dept Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Bin]Beijing Univ Technol, Coll Mat Sci & Engn, Dept Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Ming-Jie]Beijing Univ Technol, Coll Mat Sci & Engn, Dept Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 6 ] [An, Quan-Fu]Beijing Univ Technol, Coll Mat Sci & Engn, Dept Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Yin, Ming-Jie]Beijing Univ Technol, Coll Mat Sci & Engn, Dept Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China;;[An, Quan-Fu]Beijing Univ Technol, Coll Mat Sci & Engn, Dept Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION

ISSN: 1433-7851

Year: 2024

Issue: 31

Volume: 63

1 6 . 6 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 14

SCOPUS Cited Count: 15

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Affiliated Colleges:

Online/Total:413/10625129
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.