Indexed by:
Abstract:
Shearing fracture toughness of sintered silver (Ag) is an important parameter to reflect its shearing resistance. In this paper, mode II fracture toughness of sintered Ag is investigated based on end-notched flexure (ENF) test. Various sintering conditions are adopted to study the effect of sintering parameters on mode II fracture toughness of sintered Ag. The results show that the fracture toughness of sintered Ag increases rapidly with the increase of sintering temperature and holding time. Three shearing crack types are confirmed, i.e., interface delamination, tunneling cracking and cohesive cracking, and the cracking type varies from "interface delamination" or "tunneling cracking" to "cohesive cracking" with the increase of sintering temperature and holding time. An empirical equation is proposed to predict the mode II fracture toughness of sintered Ag. Through statistics investigation on microstructure evolution, it is found that the shearing fracture toughness heightens with enlargement of the Ag particle size, increase of the particle shape form factor, and decrease of the porosity. This study provides an alternative method to rigorously evaluate the shearing fracture toughness of die-attach materials in electronics packaging.
Keyword:
Reprint Author's Address:
Email:
Source :
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
ISSN: 0921-5093
Year: 2021
Volume: 823
6 . 4 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:116
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 22
SCOPUS Cited Count: 26
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 14
Affiliated Colleges: