Indexed by:
Abstract:
In the emerging technology, the generative aversive networks (GANs), randomness, and unpredictability of inputting noises are the keys to the uniqueness, diversity, robustness, and security of the generated images. Compared with deterministic software-based noise generation, hardware-based noise generation introduces physical entropy sources, such as electronic and photonic noises, to add unpredictability. In this study, bimode Bi2O2Se-based noise generators have been demonstrated for the application of GANs. Harnessing its ultrahigh carrier mobility, excellent air stability, marvelous optoelectronic performance, as well as the unique surface resistive switching effect and defect locations in the energy diagram, Bi2O2Se provides a good material platform to easily integrate with multiple device architectures for generating noises in different physical sources. The noise of the black current mode in a photodetector architecture and the random telegraph noise in a memristor mode were measured, characterized, compared, and analyzed. A method of Markov chain equipped with K-means clustering was carried out to calculate the discrete noise states and the transition probability matrix between them. To evaluate the generated properties of the GANs based on the hardware noise source, the inception score and Frechet inception distance were evaluated.
Keyword:
Reprint Author's Address:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2023
Issue: 42
Volume: 15
Page: 49478-49486
9 . 5 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:26
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: